Heterogeneity between and within Strains of Lactobacillus brevis Exposed to Beer Compounds

نویسندگان

  • Yu Zhao
  • Susanne Knøchel
  • Henrik Siegumfeldt
چکیده

This study attempted to investigate the physiological response of six Lactobacillus brevis strains to hop stress, with and without the addition of Mn2+ or ethanol. Based on the use of different fluorescent probes, cell viability and intracellular pH (pHi) were assessed by fluorescence microscopy combined with flow cytometry, at the single cell level. The combined approach was faster than the traditional colony based method, but also provided additional information about population heterogeneity with regard to membrane damage and cell size reduction, when exposed to hop compounds. Different physiological subpopulations were detected under hop stress in both hop tolerant and sensitive strains. A large proportion of cells were killed in all the tested strains, but a small subpopulation from the hop tolerant strains eventually recovered as revealed by pHi measurements. Furthermore, a short term protection against hop compounds was obtained for both hop tolerant and sensitive strains, by addition of high concentration of Mn2+. Addition of ethanol in combination with hop compounds caused an additional short term increase in damaged subpopulation, but the subsequent growth suggested that the presence of ethanol provides a slight cross resistance toward hop compounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Genome Sequences of Exopolysaccharide-Producing, Brewery-Associated Lactobacillus brevis Strains

Lactobacillus brevis represents one of the most relevant beer-spoiling bacteria. Besides strains causing turbidity and off flavors upon growth and metabolite formation, this species also comprises strains that produce exopolysaccharides (EPSs), which increase the viscosity of beer. Here, we report the complete genome sequences of three EPS-producing, brewery-associated L. brevis strains.

متن کامل

Membrane-bound ATPase contributes to hop resistance of Lactobacillus brevis.

The activity of the membrane-bound H+-ATPase of the beer spoilage bacterium Lactobacillus brevis ABBC45 increased upon adaptation to bacteriostatic hop compounds. The ATPase activity was optimal around pH 5.6 and increased up to fourfold when L. brevis was exposed to 666 microM hop compounds. The extent of activation depended on the concentration of hop compounds and was maximal at the highest ...

متن کامل

Genome Sequence of Rapid Beer-Spoiling Isolate Lactobacillus brevis BSO 464

The genome of brewery-isolate Lactobacillus brevis BSO 464 was sequenced and assembly produced a chromosome and eight plasmids. This bacterium tolerates dissolved CO2/pressure and can rapidly spoil packaged beer. This genome is useful for analyzing the genetics associated with beer spoilage by lactic acid bacteria.

متن کامل

Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA.

Lactobacillus brevis is a major contaminant of spoiled beer. The organism can grow in beer in spite of the presence of antibacterial hop compounds that give the beer a bitter taste. The hop resistance in L. brevis is, at least in part, dependent on the expression of the horA gene. The deduced amino acid sequence of HorA is 53% identical to that of LmrA, an ATP-binding cassette multidrug transpo...

متن کامل

Development of a propidium monoazide-polymerase chain reaction assay for detection of viable Lactobacillus brevis in beer

The spoilage of beer by bacteria is of great concern to the brewer as this can lead to turbidity and abnormal flavors. The polymerase chain reaction (PCR) method for detection of beer-spoilage bacteria is highly specific and provides results much faster than traditional microbiology techniques. However, one of the drawbacks is the inability to differentiate between live and dead cells. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017